Tomasz Stoeck, Tomasz Osipowicz
Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

ANALIZA USZKODZEŃ WTRYSKIWACZY COMMON RAIL FIRMY
BOSCH STOSOWANYCH W SILNIKACH WYSOKOPRĘŻNYCH
POJAZDÓW UŻYTKOWYCH

Wprowadzenie

Współcześnie układy Common Rail stały się najbardziej
rozpoznanym systemem podawania oleju napędowego. W sektorze samochodów osobowych
zdecydowanie wyróżniły inne rozwiązania, przede wszystkim ze względu na większą precyzję sterowania
przebiegiem wtrysku. Większe zróżnicowanie obserwuje się na rynku pojazdów użytkowych, na którym
wykorzystywane są również inne systemy, np. silniki z pompowtryskawcami PDE / PPD (z niem. Pumpe-Düse-
Einheit, Piezo-Pumpe-Düse) czy zespoły zasilania PLD (z niem. Pumpe-Leitung-Düse). Tym niemniej udział
wysokoszybowych układów zasobnikowych stało rosnąć, gdyż wielofazowy wtrysk pozwala na uzyskanie
bardzo dobrych parametrów dynamicznych silników, przy jednoczesnym ograniczeniu zużycia paliwa oraz bardzo
niszkiej emisji związków toksycznych w spalinach. Warto
również wspomnieć, iż pierwszym pojazdem z jednostką
wysokoprężną i systemem Common Rail firmy Denso był
samochód ciężarowy Hino Rising Ranger, który wyprodukowano w roku 1995.

Silniki pojazdów użytkowych oferowane są zazwyczaj
w kilku wersjach, by niewielkie zmiany konstrukcyjne lub
regulacyjne pozwoliły na uzyskanie wymaganych
parametrów, zależnych od przeznaczenia danego typu
samochodu. Liderem układów wtryskowych pozostaje
firma Bosch, oferująca kompleksowy asortyment części
zamiennych, udostępniając przy tym technologie
regeneracji. Wtryskiwacze z tego segmentu mają wspólnie
okresienie CRiN, czyli Common Rail Injector Nfz (z niem.
Nutzfahrzeug). Ich kolejne generacje różnią się od
wysokoprężnych wtryskiwaczy, co wynika z trudności
warunków pracy silników długotrwałe oraz intensywnie
eksplotowanych. W artykule odniesiono się do
standardowych usterek, analizując poszczególne części
w aspekcie możliwości ewentualnej naprawy.

Zasadniczym celem badań była natomiast regeneracja
wtryskiwaczy CRiN, zdemontowanych z silnika pojazdu
Iveco Daily UniJet 2.8 o przebiegu 210 tys. km.
Przedstawiono metodkę i zakres najistotniejszych
czynności wykonanych w poszczególnych etapach tego
procesu.

---

Rysunek 1. Poszczególne etapy procesu regeneracji badanych wtryskiwaczy

Źródło: opracowanie własne

---

1Zachodniopomorski Uniwersytet Technologiczny w Szczecinie, Wydział Inżynierii Mechanicznej i Mechatroniki, Katedra Eksploatacji Pojazdów Samochodowych.
2Artykuł recenzowany
8Dziął M., Borowiec T., Karpik W., Stołbicki P.: Możliwości badania stanu technicznego nowoczesnych wtryskiwaczy silników o zapłonie
samoczynnym, „Logistyka”, Poznań, 03/2011.
Zakres i metodyka

Obiekt badań stanowił komplet wtryskiwaczy elektromagnetycznych, podających paliwo w 4-cylindrowym silniku o zapłonie samoczynnym (ZS). Jest to jednostka turboodpowadowana z bezpośrednim wtryskiem paliwa i chłodnicą powietrza doładowującego, wyposażona w układ Common Rail typu Unijet. Regenerację wtryskiwaczy prowadzono na stanowiskach laboratoryjnych VASCO Sp. z o.o. z siedzibą w Mierzyń, współpracując z Katedrą Eksploatacji Pojazdów Samochodowych Zachodniopomorskiego Uniwersytetu Technologicznego w Szczecinie.

W badaniach wykorzystano m. in.:
- stół probierczy EPS 200 Bosch,
- aparaturę 3-fazy Bosch (CRR 120, CRR 220, CRR 320, CRR 420, LAB/SM135),
- mikroskop FL150/70 z kamerą do cyfrowego zapisu obrazów na komputerze PC,
- mierniki do pomiarów elektrycznych (MIC-40700, M890C),
- myjki ultradźwiękowe (Elma Elmasonic S 10 H, Carbon Tech Ultrasonic Bath S15/C2),
- imadła i zestawy do demontażu oraz montażu wtryskiwaczy,
- specjalistyczne narzędzia i klucze dynamométryczne.

 Wyniki badań etapu I

W pierwszym rzędzie wtryskiwacze zdemontowano z silnika i poddano oglądninom wstępnej, które polegały na ocenie wzrokowej oraz sprawdzeniu kompletności elementów składowych. Przykłady uszkodek zewnętrznych, możliwych do wykrycia w tym etapie, zawierano w tabeli 1. Wyszczególniono przy tym najczęstsze przyczyny ich występowania, jak również wskazania dotyczące naprawy.

W analizowanych przypadkach nie stwierdzono istotnych defektów, przy czym na końcówkach rozpylaczy pojawiły się węzły w materiale oraz ślady korozji, widoczne bez użycia przyrządów optycznych. Zanieczyszczenie wtryskiwacza, wynikające z intensywnej i długotrwałej eksploatacji, oceniono jako średni. Ich stan pozwalał na przeprowadzenie procesu regeneracji, ale dyskwalifikował z testów wstępnych. Istnieje bowiem możliwość przedostania się stałych, twardych cząstek, które pozostały we wntętrzu wtryskiwacza do płynu probierczego, co grozi nawet awarią urządzenia. Mogą to być zanieczyszczenia samego paliwa, jak też opłuki pochodzące ze zużytej pompy wysokiego ciśnienia6. Dlatego dokonano wyłącznie identyfikacji, odczytując numeru producenta z górnej części obudowy i odnajdując je w systemie stołu EPS 200 Bosch.

Przed rozłożeniem wtryskiwaczy na części składowe można dodatkowo przeprowadzić kontrolę oporności i indukcyjności cewek oraz ich zwarcie do mas. Przykłady takich pomiarów przedstawiono w literaturze6,7. Usterki

---

7Izdior M., Borowczyk T., Karpiuk W., Stobińcki P.: Możliwości badania stanu technicznego nowoczesnych wtryskiwaczy silników o zapłonie samoczynnym, „Logistyka”, Poznań, 03/2011.

---

Tabela 1. Przykłady możliwych uszkodek zewnętrznych wtryskiwaczy CRIN

<table>
<thead>
<tr>
<th>Rodzaj części</th>
<th>Rodzaj uszkodzenia</th>
<th>Możliwe przyczyny</th>
<th>Nagroda (wymiana)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silnik</td>
<td>Skorodowanie, uszkodzenie silnika lub dostarczające go cewki</td>
<td>Wysoka temperatura, silnik zbyt gorączkowy</td>
<td>Wymiana silnika lub dostarczającego go cewki</td>
</tr>
<tr>
<td>Kompresor</td>
<td>Zanieczyszczenia, uszkodzenia</td>
<td>Wysoka temperatura, silnik zbyt gorączkowy</td>
<td>Wymiana kompresora</td>
</tr>
<tr>
<td>Uzgędzalnik</td>
<td>Zanieczyszczenia, uszkodzenia, skrót czynników otworów</td>
<td>Wysoka temperatura, silnik zbyt gorączkowy</td>
<td>Wymiana uzgędzalnika</td>
</tr>
<tr>
<td>Wtryskiwacz</td>
<td>Wysokie ciśnienie, uszkodzenia</td>
<td>Wysoka temperatura, silnik zbyt gorączkowy</td>
<td>Wymiana wtryskiwacza</td>
</tr>
</tbody>
</table>

---

źródło: opracowanie własne.

w tym zakresie spotykane są sporadyczne w konstrukcjach CRIN, tym niemniej stanowią podstawę do odstąpienia od dalszej naprawy. Wynika to z braku możliwości przeprowadzenia testów końcowych na próbniiku w kolejnym etapie. W badanych wtryskiwaczych nie wykryto żadnych nieprawidłowości.

Demontaż rozpoczęto od odkryczenia nakrętek rozpylaczy. Wartość przyłożonego momentu nie powinna przekroczyć 150 Nm, gdyż można trwale uszkodzić powierzchnie uszczelniające i ściąć końki utulające. Proces ten prowadzono w specjalnych imadłach unieruchamiających naprawiany wtryskiwacz. Przed odkręcaniem zespołu elektrozaworu przeprowadzono znaczenie traserskie względem korpusu głównego, celem łatwiejszego montażu po regeneracji. Elementy składowe wtryskiwacza CRIN1 po demontażu przedstawiono na rysunku 2.

Mycie części w myłkach ultradźwiękowych prowadzono przez okres 30 min. Z założenia nie powinno zanurzać elektrozaworu sterującego w środku czyszczącym, gdyż może to prowadzić do zmiksowania oston z tworzywa sztucznego oraz uszkodzenia izolacji cewki elektromagnetycznej. W przypadkach silnego zabrudzenia można taką czynność przeprowadzić, jednak w czasie
Wyniki badań etapu II

W weryfikacji i ocenie zasadniczej koncentrowano się głównie na parach precyzyjnych oraz elementach wykonawczych. Przykłady uszkodzeń wewnętrznych, możliwych do wykrycia po demontażu na części składowej, przedstawiono w tabeli 2. Zaliczono do nich defekty cewek elektromagnetycznych pomimo, iż pomiary elektryczne powinny zazwyczaj w początkowym etapie regeneracji.

Do badania analizowanych wtryskiwaczy wykorzystano mikroskop laboratoryjny typu FL-150/70. Zaoberwano wyraźne ślady zatarcia igieł oraz tótków prowadzących, jak również deformację gięcia zaworów w strefie kontaktu z kulką (rysunki 3 i 4). Obrazy pod dużym powiększeniem potwierdziły obecność wierzchołków materiałów w rozpylaczy i wyraźne ślady korozji. Świadczą one o zasianiu silnika paliwami złej jakości, zawierających wodę i związki siarki. Sugerują również konieczność sprawnego pompowania dostarczającego ciepła oraz wyczyśćczenia całego układu, ze zbiornikiem paliwa włącznie. W efekcie zachęcano do wymiany następujących elementów: rozpylacz i ich nakrętki, igiel, o-ringów oraz zaworów i tótków prowadzących, które nie zostały użyte na rysunku 1.

W pierwszej kolejności złożone zostały górne części wtryskiwacza, przy zachowaniu kolejności odwrotnej jak podana w tabeli 2.
powoduje zawyżenie dawki przelewu oraz jego nieoprawne działanie. Jest to usterek bardzo często spotykaną, również we wtryskiwaczach elektromagnetycznych silników pojazdów osobowych, a wynikająca z niewłaściwego skoku kulki. Dlatego po procesie montażu przeprowadzono pomiary tego parametru, wykorzystując aparaty 3-fazy Bosch, w tym m.in.: generator pneumatyczny i elektryczny (CRR 120, CRR 220), klucz dynamometryczny (CRR 320), czujnik cyfrowy (CRR420), zasilacz laboratoryjny (LAB/SM135). Należy podkreślić, iż w przypadku wystąpienia różnicy w badaniu mechanicznym AH (z niem. Ankerhub) oraz elektrycznym AHe (z niem. Ankerhub elektr.) należy ponownie zdementować górną część wtryskiwacza i wymienić podkładkę regulacyjną skoku kulki. W analizowanych konstrukcjach nie wykryto nieprawidłowości w tym zakresie (rysunek 5).

Wnioski

Uszkodzenia wtryskiwaczy CRIN powstają wskutek naturalnego zużywania się poszczególnych elementów, co uwidacznia się zazwyczaj po okresie długotrwałej eksploatacji na silniku ze znaczną intensywnością. Proces ten jest charakterystyczny dla pojazdów użytkowych, konstruowanych pod kątem zużycia znacznych przebiegów przy bezobsługowej i bezawaryjnej pracy. Należy jednak podkreślić, że w pewnych przypadkach dochodzi do zużycia przyspieszonych, określanych mianem patologicznych. Najczęściej decydującym czynnikiem jest paliwo, którego jakość, czystość oraz właściwości fizykochemiczne wpływają na trwałość części, głównie elementów wykonawczych i par precyzyjnych.

Stosunkowo liczną grupę stanowią usterki, wynikające z niewłaściwego montażu lub montematu wtryskiwacza, a które prowadzi się w niewyspecjalizowanych palówkach usługowych. Zupełnie niepotrzebnie narażają one właścicieli pojazdów czy firmy transportowe na dodatkowe koszty. Zasadniczą kwestię stanowi bowiem przestrzeganie obowiązujących procedur obsługowych oraz stosowanie dedykowanego osprzętu. Rynek części zamiennych pozwala na prowadzenie regeneracji wtryskiwaczy CRIN w bardzo szerokim zakresie, bez konieczności stosowania nieoryginalnych zamienników wątpliwej jakości.

Streszczenie


---

7 Ićdor M., Borowczyk T., Karpik W., Stobnicki P.: Możliwości badania stanu technicznego nowoczesnych wtryskiwaczy silników o zaplenie samochodowym „Logistyka”, Poznań, 03/2011.
ANALYSIS OF DAMAGES COMMON RAIL INJECTORS USING IN DIESEL ENGINES COMMERCIAL VEHICLES

Abstract

The article describes the most common damages and defects electromagnetic CRIN Bosch Diesel engines injectors. There have been detailed the possibilities reasons developing it. The aspects of effective regeneration theirs have been exhibited and assessed. It has been shown procedure and range during repairing and it has been concerned to Diesel engine commercial vehicle Iveco Daily Unijet 2,8.

Literatura